Regulation of Ca2+ release from internal stores in cardiac and skeletal muscles.

نویسنده

  • A Wrzosek
چکیده

It is widely accepted that Ca2+ is released from the sarcoplasmic reticulum by a specialized type of calcium channel, i.e., ryanodine receptor, by the process of Ca2+-induced Ca2+ release. This process is triggered mainly by dihydropyridine receptors, i.e., L-type (long lasting) calcium channels, directly or indirectly interacting with ryanodine receptor. In addition, multiple endogenous and exogenous compounds were found to modulate the activity of both types of calcium channels, ryanodine and dihydropyridine receptors. These compounds, by changing the Ca2+ transport activity of these channels, are able to influence intracellular Ca2+ homeostasis. As a result not only the overall Ca2+ concentration becomes affected but also spatial distribution of this ion in the cell. In cardiac and skeletal muscles the release of Ca2+ from internal stores is triggered by the same transport proteins, although by their specific isoforms. Concomitantly, heart and skeletal muscle specific regulatory mechanisms are different.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca2+-induced Ca2+ Release in Chinese Hamster Ovary (CHO) Cells Co-expressing Dihydropyridine and Ryanodine Receptors

Combined patch-clamp and Fura-2 measurements were performed on chinese hamster ovary (CHO) cells co-expressing two channel proteins involved in skeletal muscle excitation-contraction (E-C) coupling, the ryanodine receptor (RyR)-Ca2+ release channel (in the membrane of internal Ca2+ stores) and the dihydropyridine receptor (DHPR)-Ca2+ channel (in the plasma membrane). To ensure expression of fun...

متن کامل

Molecular interaction of dihydropyridine receptors with type-1 ryanodine receptors in rat brain.

In striated muscles, Ca2+ release from internal stores through ryanodine receptor (RyR) channels is triggered by functional coupling to voltage-activated Ca2+ channels known as dihydropyridine receptors (DHPRs) located in the plasma membrane. In skeletal muscle, this occurs by a direct conformational link between the tissue-specific DHPR (Ca(v)1.1) and RyR(1), whereas in the heart the signal is...

متن کامل

Independent regulation of Ca2+ entry and release from internal stores in activated B cells

Addition of crosslinking antibody to B lymphocytes results in a rapid rise in cytoplasmic-free Ca2+ ([Ca2+]i) due to release of Ca2+ from internal stores and uptake of Ca2+ across the plasma membrane. Inositol 1,4,5-trisphosphate is believed to mediate the release of internal Ca2+ stores and has also been proposed to mediate extracellular Ca2+ entry. We have compared the properties of these two...

متن کامل

Structural interaction between RYRs and DHPRs in calcium release units of cardiac and skeletal muscle cells.

Excitation-contraction (e-c) coupling in muscle cells is a mechanism that allows transduction of exterior-membrane depolarization in Ca2+ release from the Sarcoplasmic Reticulum (SR). The communication between external and internal membranes is possible thanks to the interaction between Dihydropyridine Receptors (DHPRs), voltage-gated Ca2+ channels located in exterior membranes, and Ryanodine R...

متن کامل

A reassessment of the effects of luminal [Ca2+] on inositol 1,4,5-trisphosphate-induced Ca2+ release from internal stores.

Inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ release from intracellular stores displays complex kinetic behavior. While it well established that cytosolic [Ca2+] can modulate release by acting on the InsP3 receptor directly, the role of the filling state of internal Ca2+stores in modulating Ca2+ release remains unclear. Here we have reevaluated this topic using a technique that permits rap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 47 3  شماره 

صفحات  -

تاریخ انتشار 2000